
BiRG

Jesper Brink and Per Høgfeldt

Apr 15, 2020

CONTENTS

1 User’s guide 3
1.1 User’s Guide . 3

1.1.1 Installation . 3
1.1.2 Tutorial . 4

2 Development 9
2.1 Development . 9

2.1.1 How BiRG Works . 9
2.1.2 Test Setup . 10
2.1.3 Experiments . 10
2.1.4 Suggetions for future work . 11

i

ii

BiRG

BiRG is an automation tool for generating Conda recipes for the Bioconda channel. It is built on heuristics about how
to find dependencies based on the error messages it gets from trying to build and run some given software.

BiRG achieves the same goal as conda skeleton, but instead of collecting the metadata from PyPI and building the
recipe based on that, BiRG finds a package’s dependencies by trying to build the package, and based on the error
messages BiRG tries to detect the dependencies.

Therefore, BiRG is the choice if you don’t have the software’s metadata already available. However, in case you do
have a package on PyPI, we recommend to simply use conda skeleton. A guide to this can be found here.

CONTENTS 1

https://docs.conda.io/projects/conda-build/en/latest/user-guide/tutorials/build-pkgs-skeleton.html

BiRG

2 CONTENTS

CHAPTER

ONE

USER’S GUIDE

1.1 User’s Guide

1.1.1 Installation

BiRG is heavily dependent on Docker, therefore make sure that you have Docker installed and working. We use
Docker to ensure that the environment, which we are building and testing in, is clean and reproducible.

If you don’t have Docker installed, we recommend that you follow the Docker installation guide which can be found
at the following link: Docker installation guide

When Docker is installed, we recommend following the post-installation step “Manage Docker as a non-root user”, the
linux guide can be found here . Setting up Docker to be used as non-root, will make it possible to run BiRG without
escalated privileges.

From Docker Hub

We have prepared a docker image for running BiRG, the docker image can be downloaded from Docker Hub, by
running the following command:

$ docker pull perhogfeldt/birg:latest

That’s it you can now proceed to the tutorial, for instructions on how to use the docker image.

Tutorial

From Source

First clone the BiRG recipe from github with the following command:

$ git clone https://github.com/birgorg/birg.git

Next up is to create a conda environment from the environment.yml file in the BiRG repo folder:

$ cd birg
$ conda env create -f environment.yml
$ conda activate birg

Note: There might be problems with creating an environment from the environment.yml file, if you are on a mac. A
solution is to run the following commands instead:

3

https://docs.docker.com/install/
https://docs.docker.com/install/linux/linux-postinstall/

BiRG

conda create -n birg python=3.6 bioconda-utils docker-py gitdb2=2.0.5
conda activate birg

Install it with the setup.py and check if BiRG is installed correctly by running -h:

$ pip install .
$ birg -h

1.1.2 Tutorial

To show how BiRG works, we will create a recipe for a software called kallisto. We will start with generating an
initial recipe, with basic information about kallisto. This recipe will then be given as input to BiRG, which will find
the necessary dependencies required to build, test and run the software.

We assume that you are using the docker image that we provide, but if you have installed BiRG from source, the
tutorial still applies, just go directly to Recipe Initilization.

Using the Docker Container

The docker container should be called with the following settings, so that the container and the host system can
communicate.

$ docker run -v /var/run/docker.sock:/var/run/docker.sock \
-v $PWD:/home \
--user $(id -u):$(id -g) \
-it perhogfeldt/birg:latest \
<birg-command>

In the rest of this tutorial you can just replace birg with the above command.

Here is a short explanation on what the settings are for, if you are not so familiar with docker.

The first volume we added, with -v, is the unix socket that the docker client uses to talk with the docker server. We
need to add this socket, since the container will need to spin up more containers, when it tries to build the software.
The second volume will bind the containers home direcetory to the host systems current directory, this will make sure
that files can be shared. the –user option makes sure that files created on you system will be owned by your current
user and -it just makes sure that you can communicate with the container directly in your current terminal.

If you prefer not to write all the settings every time you call birg, we recommend exporting the settings in an environ-
ment variable like this:

$ export BIRG="-v /var/run/docker.sock:/var/run/docker.sock \
-v $PWD:/home --user $(id -u):$(id -g) \
-it perhogfeldt/birg:latest"

Then you can just call birg with the environment variable:

$ docker run $BIRG <birg-command>

4 Chapter 1. User’s guide

BiRG

Recipe Initilization

First we will generate an initial recipe, this can be done by using the command birg init. BiRG will then ask for
basic information about the software and create a directory named after the software, which contains two files called
meta.yaml and build.sh. These files are the initial recipe, that we will transform into the final recipe.

The init command will ask for the following informations:

• Name

• Version

• Source url

• A build strategy to use

Here is the initialization of kallisto:

$ birg init
Package name: kallisto
Version: 0.46.2
Url to download the code: https://github.com/pachterlab/kallisto/archive/v0.46.2.tar.
→˓gz
Choose the strategy that you use to run your code
['cmake', 'python2', 'python3']: cmake

The Recipe

The basic recipe created by init, can be found in the newly created directory called kallisto and should look like this:

Listing 1: kallisto/meta.yaml

package:
name: kallisto
version: 0.46.2

source:
url: https://github.com/pachterlab/kallisto/archive/v0.46.2.tar.gz
md5: a6257231c6b16cac7fb8ccff1b7cb334

build:
number: 0

Listing 2: kallisto/build.sh

#!/bin/bash
mkdir -p build
cd build
cmake ..
make
make install

This is the minimal initial recipe, that you can give as input to BiRG. To make it easier for BiRG to find run-time
dependencies it is important to add tests to the meta.yaml file. If you have a patch or would like to add some additional
meta data, feel free to do so. For information on what data and configuration you can add to a recipe, see the official
Conda documentation here

Before using the recipe for kallisto as input to BiRG, we will add some tests to the meta.yaml file. By adding tests, we
makes sure that BiRG will try and find run-time dependencies as well as build-time dependencies.

1.1. User’s Guide 5

https://docs.conda.io/projects/conda-build/en/latest/resources/define-metadata.html

BiRG

Listing 3: kallisto/meta.yaml

package:
name: kallisto
version: 0.46.2

source:
url: https://github.com/pachterlab/kallisto/archive/v0.46.2.tar.gz
md5: a6257231c6b16cac7fb8ccff1b7cb334

build:
number: 0

test:
commands:

- kallisto cite

We will also edit the the build.sh, as kallisto requires us to run autoreconf and to set some flags for cmake:

Listing 4: kallisto/build.sh

#!/bin/bash

cd ext/htslib
autoreconf
cd ../..

mkdir -p $PREFIX/bin
mkdir -p build
cd build
cmake -DCMAKE_INSTALL_PREFIX:PATH=$PREFIX .. -DUSE_HDF5=ON
make
make install

Note: The recipe for kallisto can be found in our github repo here

Recipe Build

We are now ready to give our inital recipe as input to BiRG. The build command takes two required arguments as
shown below:

$ birg build --help
usage: birg build [-h] [-d] recipe_path {cmake,python2,python3}

positional arguments:
recipe_path Path to folder with meta.yaml and build.sh templates
{cmake,python2,python3}

The ? that you used when creating the template with
'init'

optional arguments:
-h, --help show this help message and exit
-d, --debug Set this flag if you want to activate the debug mode.

This creates an debug.log file that contains all debug
prints

recipe_path: Is the path to the recipe directory which was created by running birg init.

6 Chapter 1. User’s guide

https://github.com/Hogfeldt/bioconda_recipe_gen/tree/master/examples/cmake/input

BiRG

strategy: Here you must tell BiRG which building strategy to use. BiRG currently supports three strategies: cmake,
python2 and python3.

Here is an example on how BiRG is called for building kallisto:

$ birg build kallisto/ cmake

When BiRG is running it will print out a lot of text, this is the output from it’s building process. BiRG will also,
sometimes, ask for your help, to determine which version of a dependency it should use.

When BiRG is done running it will tell you if it was able to build and run your software, and the output recipe can be
found in the directory which was created by the init command.

Here is the final recipe for kallisto:

Listing 5: kallisto/meta.yaml

package:
name: kallisto
version: 0.46.2

source:
url: https://github.com/pachterlab/kallisto/archive/v0.46.2.tar.gz
md5: a6257231c6b16cac7fb8ccff1b7cb334

build:
number: 2

test:
commands:
- kallisto cite

requirements:
build:
- cmake
- make
- automake
- {{ compiler('cxx') }}
host:
- hdf5
run:
- hdf5
- zlib

Listing 6: kallisto/build.sh

#!/bin/bash

cd ext/htslib
autoreconf
cd ../..

mkdir -p $PREFIX/bin
mkdir -p build
cd build
cmake -DCMAKE_INSTALL_PREFIX:PATH=$PREFIX .. -DUSE_HDF5=ON
make
make install

Congratulation you can now add your recipe to Bioconda and share your software.

1.1. User’s Guide 7

BiRG

8 Chapter 1. User’s guide

CHAPTER

TWO

DEVELOPMENT

2.1 Development

2.1.1 How BiRG Works

BiRG is split into four phases: preprocess, build phase, runtime phase and sanity check.

Preprocess

The preprocess step only applies to the python build strategy at the moment. What BiRG does for python packages
is to look for a setup.py file and if it finds it BiRG runs python setup.py sdist. This outputs a requires.txt file, which
hopefully contains most of the packages needed to build the given software. These packages are then added to the
recipe before going to the next phase (and therefore reducing the overall running time).

Build Phase

The build phase is an iterative process where BiRG takes the current recipe and the given software, and runs the conda
build command. In this phase, the –build-only flag is set, to make sure it stops before running the tests in the recipe.

This gives a way to find all the build and host dependencies for the recipe before moving on to the runtime phase.

9

BiRG

Runtime Phase

The runtime phase works like the build phase, but does also execute the tests given in the recipe. This is therefore
where BiRG finds all dependencies used at runtime.

Sanity Check

The sanity check comes as the last thing, after the runtime phase has added all the dependencies it could detect. Here
BiRG runs the final recipe with bioconda-utils to see whether or not the final recipe can build the package successfully.
If successful, then the recipe is ready to build the software, and if not, the user has to see if it is possible to manually
detect the missing package(s) or version(s).

2.1.2 Test Setup

The way we have been developing BiRG is by taking a set of packages from bioconda-recipes and then use our test
pipeline which can be found in the birg_ci repo. This pipeline runs BiRG on all the chosen packages and outputs for
each package:

• a file with everything from stdout that was generated doing the build

• the generated meta.yaml

• the generated build.sh

Furthermore, it outputs a single overview file with each package name and whether or not it did build.

Exactly how to use the pipeline (or part of it) is explained in the the README of the birg_ci repo.

2.1.3 Experiments

To see how well BiRG performs, we found all python (exclusively python, no other code like for example c) and
cmake (packages with a CMakeList.txt in the root folder) packages on bioconda-recipes.

We then tried to build the recipes for these packages with BiRG. We considered the recipe created successfully if
running bioconda-utils build with the recipe resulted in a successful build, as this is how a recipe should be used to
make a conda package.

Note: Before running the packages on BiRG, we filtered out all packages that didn’t get a successful built with
bioconda-utils build given its own recipe (E.g. blacklisted packages)

Results

• Python packages (both python2 and python3):

– Date: 15/3/20

– Total amount: 397

– Successful builds: 256

– Percentage of packages successfully built: 64%

• Cmake packages:

– Date: 13/11/19

– Total amount: 49

10 Chapter 2. Development

https://github.com/bioconda/bioconda-recipes
https://github.com/birgorg/birg_ci
https://github.com/birgorg/birg_ci
https://github.com/bioconda/bioconda-recipes

BiRG

– Successful builds: 28

– Percentage of packages successfully built: 57%

2.1.4 Suggetions for future work

This page is a compilation of suggestions for improvements that we haven’t had the time to make.

Generalizing how to find binaries/libraries in packages

Motivation: When a package fails to build because of a missing binary file or library header, it can be very hard to
figure out which package should be included as a dependency. Our current solution is to map known ‘failing signatures’
to known packages, and then add the package as a dependency, to observe if adding the package solves the problem.
This way of mapping seems to work, for a large amount of packages, since many of the packages on Bioconda, seems
to use the same dependecies. But it doesn’t scale well, since we have to observe and add new signatures manually.

Suggestion: It would be really helpful to index all files in all Bioconda packages, so that we could search for a specific
executable or library header file in all Bioconda packages. By doing this we could generalize finding binaries/library
files by extracting the file name with a regular expression and search for the packages containing this file. If more than
one result comes up, it would be easy to implement some kind of heuristic for choosing the right package or simply
ask the user for help. As a part of the priliminary study for this project we downloaded, unpacked and made a primitive
index of all files in all packages from Bioconda, so we was able to answer questions like “How many packages on
Bioconda have a Makefile in it’s project root dir?” or “How many packages have a setup.py file?”. This was quite
fast and could probably be automated a lot with a good CI setup. Creating such a search engine for Bioconda would
not only benefit this tool, but would also benefit developers trying to create a recipe for their software by hand. We
therefore suggest that such a tool could be developed as a separate piece of software, which we then could integrate in
this tool.

2.1. Development 11

	User’s guide
	User’s Guide
	Installation
	Tutorial

	Development
	Development
	How BiRG Works
	Test Setup
	Experiments
	Suggetions for future work

